# math

find the area enclosed betwen cycloid X= a(t-sin(t))? How can i solve this problem ? send me the steps

Note by Er Kundan Sharma
5 years, 3 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

If you're going to parametrize the cycloid at least give us both $$x,y$$: $x=a(t-\sin t)\\ y=a(1-\cos t)$

You want to determine the area from $$t=0$$ to $$t=2\pi$$ (i.e. one whole arch), so we write: $A=\int_{t=0}^{t=2\pi}y\,\mathrm{d}x$

Recognize that $$y=a(1-\cos t)$$ and $$\mathrm{d}x=a(1-\cos t)\,\mathrm{d}t$$, so our integral is: $A=\int_0^{2\pi}a^2(1-\cos t)^2\,\mathrm{d}t$

Can you finish this off?

- 5 years, 3 months ago

\begin{align*}A&=a^2\int_0^{2\pi}(1-2\cos t+\cos^2 t)\,\mathrm{d}t\\&=a^2\int_0^{2\pi}\left[1-2\cos t+\frac12+\frac12\cos 2t\right]\,\mathrm{d}t\\&=a^2\left[t-2\sin t+\frac12t+\frac14\sin 2t\right]_0^{2\pi}\\&=a^2\left[2\pi+\pi\right]\\&=3\pi a^2\end{align*}

- 5 years, 3 months ago

×