×

# Mathmetical induction

Mathematical induction

Note by Shubham Gupta
4 years, 5 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

You are referring to the First Principle of Finite Induction, which can be proved by contradiction.

Staff - 4 years, 5 months ago

why in induction problems we assume that f(n) is true and then proceed.....this is only the thing to prove

- 4 years, 5 months ago

I would like to explain the whole principle: First we check for $$f(1)$$, if it is true we proceed.Then we assume that it is true for a natural number k.Then we check whether it is true for k+1.If it is also true then our given expression is true for all natural numbers.We assumed that it is true for k then we proceed, but previously we checked that it is true for 1.So in this case k=1.Now we prove that it is true for k+1,so it is true for k=2.So now we proved that it is true for 2.Now ,let k=2 as k=2 satisfies the condition,so we again prove that it is true for k+1 i.e 3.Again we let k=3 and prove for k=4.The cycle goes on and on which shows that expression is true for all natural numbers.Let me know where I am wrong.Yes I accept my weak english.Sorry for it.

- 4 years, 5 months ago