Waste less time on Facebook — follow Brilliant.
×

Mathmetical induction

Mathematical induction

Note by Shubham Gupta
4 years, 5 months ago

No vote yet
4 votes

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

You are referring to the First Principle of Finite Induction, which can be proved by contradiction.

Calvin Lin Staff - 4 years, 5 months ago

Log in to reply

why in induction problems we assume that f(n) is true and then proceed.....this is only the thing to prove

Shubham Gupta - 4 years, 5 months ago

Log in to reply

I would like to explain the whole principle: First we check for \(f(1)\), if it is true we proceed.Then we assume that it is true for a natural number k.Then we check whether it is true for k+1.If it is also true then our given expression is true for all natural numbers.We assumed that it is true for k then we proceed, but previously we checked that it is true for 1.So in this case k=1.Now we prove that it is true for k+1,so it is true for k=2.So now we proved that it is true for 2.Now ,let k=2 as k=2 satisfies the condition,so we again prove that it is true for k+1 i.e 3.Again we let k=3 and prove for k=4.The cycle goes on and on which shows that expression is true for all natural numbers.Let me know where I am wrong.Yes I accept my weak english.Sorry for it.

Kishan K - 4 years, 5 months ago

Log in to reply

thnks kevin ,and about your english ,its absolutely flawless

Shubham Gupta - 4 years, 5 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...