×

# Mechanics

Find the law of force to the pole when the path is the cardioid $$r=a(1- \cos \theta)$$, and prove that if $$F$$ were the force at the apse, and $$V$$ the velocity $$3V^2=4aF$$.

Note by Syed Subhan Siraj
2 years, 5 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

First we assume that the motion is under a central force. Applying logarithmic differentiation:$r=a\left( 1-\cos { \theta } \right) \\ \Rightarrow \frac { 1 }{ r } \frac { dr }{ d\theta } =\frac { a\sin { \theta } }{ a\left( 1-\cos { \theta } \right) } =\frac { 2\sin { \frac { \theta }{ 2 } } \cos { \frac { \theta }{ 2 } } }{ 2\sin ^{ 2 }{ \frac { \theta }{ 2 } } } =\cot { \frac { \theta }{ 2 } } =\cot { \phi } \\ \Rightarrow \phi =\frac { \theta }{ 2 }$ where $$\phi$$ is the polar-tangential angle in pedal coordinates. Now we have $p=r\sin { \phi } =r\sin { \frac { \theta }{ 2 } } =\frac { r }{ \sqrt { 2 } } \sqrt { 2\sin ^{ 2 }{ \frac { \theta }{ 2 } } } =\frac { r }{ \sqrt { 2 } } \sqrt { 1-\cos { \theta } } =\frac { r }{ \sqrt { 2 } } \sqrt { \frac { r }{ a } } =r\sqrt { \frac { r }{ 2a } } \\ \Rightarrow 2a{ p }^{ 2 }={ r }^{ 3 }$ Differentiating both sides w.r.t. r:$4ap\frac { dp }{ dr } =3{ r }^{ 2 }\\ \Rightarrow \frac { dp }{ dr } =\frac { 3{ r }^{ 2 } }{ 4ap } \\ \Rightarrow \frac { { h }^{ 2 } }{ { p }^{ 3 } } \frac { dp }{ dr } =\frac { { h }^{ 2 }.3{ r }^{ 2 } }{ { p }^{ 3 }.4ap } =3a\frac { { h }^{ 2 } }{ { r}^{ 4 } } =F$ Thus force is inversely proportional to fourth power of distance. Now, at an apse$\frac { dr }{ d\theta } =0\\ \Rightarrow \sin { \theta } =0\\ \Rightarrow \theta =0\quad or\quad \pi$ But $\theta =0\\ \Rightarrow r=0$ which is a cusp of the cardioid. Thus $\theta =\pi \\ \Rightarrow r=2a=p\\ \Rightarrow h=vp=2av\\ \Rightarrow F=3a{ \left( 2av \right) }^{ 2 }{ \left( \frac { 1 }{ 2a } \right) }^{ 2 }=\frac { 3{ v }^{ 2 } }{ 4a } \\ \Rightarrow 4aF=3{ v }^{ 2 }$[Q.E.D.]

- 2 years, 3 months ago

thx

- 2 years, 2 months ago

You are welcome..:-)

- 2 years, 2 months ago

sir ap teacher hoo??

- 2 years, 2 months ago

Nahi nahi main to ek student hoon..college mein parta hoon..

- 2 years, 2 months ago

oky me tooo

- 2 years, 1 month ago