Waste less time on Facebook — follow Brilliant.
×

Mechanics

Find the law of force to the pole when the path is the cardioid \(r=a(1- \cos \theta)\), and prove that if \(F\) were the force at the apse, and \(V\) the velocity \(3V^2=4aF\).

Note by Syed Subhan Siraj
2 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

First we assume that the motion is under a central force. Applying logarithmic differentiation:\[r=a\left( 1-\cos { \theta } \right) \\ \Rightarrow \frac { 1 }{ r } \frac { dr }{ d\theta } =\frac { a\sin { \theta } }{ a\left( 1-\cos { \theta } \right) } =\frac { 2\sin { \frac { \theta }{ 2 } } \cos { \frac { \theta }{ 2 } } }{ 2\sin ^{ 2 }{ \frac { \theta }{ 2 } } } =\cot { \frac { \theta }{ 2 } } =\cot { \phi } \\ \Rightarrow \phi =\frac { \theta }{ 2 } \] where \(\phi \) is the polar-tangential angle in pedal coordinates. Now we have \[p=r\sin { \phi } =r\sin { \frac { \theta }{ 2 } } =\frac { r }{ \sqrt { 2 } } \sqrt { 2\sin ^{ 2 }{ \frac { \theta }{ 2 } } } =\frac { r }{ \sqrt { 2 } } \sqrt { 1-\cos { \theta } } =\frac { r }{ \sqrt { 2 } } \sqrt { \frac { r }{ a } } =r\sqrt { \frac { r }{ 2a } } \\ \Rightarrow 2a{ p }^{ 2 }={ r }^{ 3 }\] Differentiating both sides w.r.t. r:\[4ap\frac { dp }{ dr } =3{ r }^{ 2 }\\ \Rightarrow \frac { dp }{ dr } =\frac { 3{ r }^{ 2 } }{ 4ap } \\ \Rightarrow \frac { { h }^{ 2 } }{ { p }^{ 3 } } \frac { dp }{ dr } =\frac { { h }^{ 2 }.3{ r }^{ 2 } }{ { p }^{ 3 }.4ap } =3a\frac { { h }^{ 2 } }{ { r}^{ 4 } } =F\] Thus force is inversely proportional to fourth power of distance. Now, at an apse\[\frac { dr }{ d\theta } =0\\ \Rightarrow \sin { \theta } =0\\ \Rightarrow \theta =0\quad or\quad \pi \] But \[\theta =0\\ \Rightarrow r=0\] which is a cusp of the cardioid. Thus \[\theta =\pi \\ \Rightarrow r=2a=p\\ \Rightarrow h=vp=2av\\ \Rightarrow F=3a{ \left( 2av \right) }^{ 2 }{ \left( \frac { 1 }{ 2a } \right) }^{ 2 }=\frac { 3{ v }^{ 2 } }{ 4a } \\ \Rightarrow 4aF=3{ v }^{ 2 }\][Q.E.D.]

Log in to reply

thx

Syed Subhan Siraj - 1 year, 11 months ago

Log in to reply

You are welcome..:-)

Kuldeep Guha Mazumder - 1 year, 11 months ago

Log in to reply

@Kuldeep Guha Mazumder sir ap teacher hoo??

Syed Subhan Siraj - 1 year, 11 months ago

Log in to reply

@Syed Subhan Siraj Nahi nahi main to ek student hoon..college mein parta hoon..

Kuldeep Guha Mazumder - 1 year, 11 months ago

Log in to reply

@Kuldeep Guha Mazumder oky me tooo

Syed Subhan Siraj - 1 year, 10 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...