My question about primes

Are there infinite primes? If yes, or no, could you prove it? Any useful internet resources?

Is there a usual pattern for primes?

How to define Mersenne primes? ( \( M_n=2^n-1) \). And how many of them had been found?

And others? Like Wilson's Theorem \( (n-1)! \equiv -1 (\text{mod n}) \)? Or all coefficients of \( (x-1)^y -(y^p)-1 \) is divisible by \( y \), then \( y \) must be prime.

Recently, I knew that the largest known prime number, which is discovered in August \( 2015 \) by Great Internet Mersenne Prime Search, is \[ \displaystyle \Huge{ \color{green}{2}^{\color{blue}{57,885,161}} - \color{red}{1}} \]It contains \( 17, 425,170 \) digits! It's a Mersene prime.

Also, the largest non-Mersenne prime number is:

\[ \Huge \color{green}{19249} \color{red}{\times 2^{\color{blue}{13018586}}} + 1 \]

Note by Adam Phúc Nguyễn
2 years, 11 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

I was excited to hear they had discovered a new larger Mersenne prime. Then I read closer and found that this is the largest known prime so far as of this month.

It was actually discovered back in 2013. Seems like it's past time they found a bigger one, right?

Steven Perkins - 2 years, 11 months ago

Log in to reply

Nope, there is no pattern to primes, in the sense that there's no simple formula that we can plug numbers into to calculate the nth prime.

However, there are some cool patterns relating to the distribution of primes among the integers. I vaguely remember a nice YouTube video about that: I'll link it here if I can find it...

Raj Magesh - 2 years, 11 months ago

Log in to reply

Yes there are infinite primes. There are some proofs in the brilliant wikis and obviously on the wikipedia too. Here is a link-- Infinitely Many Primes

Ashwin Upadhyay - 2 years, 11 months ago

Log in to reply

FYI, you can use our nifty wiki linking tool to easily link to wiki pages

Calvin Lin Staff - 2 years, 11 months ago

Log in to reply

Infinitely Many Primes

understood. Thanks.

Ashwin Upadhyay - 2 years, 10 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...