New user? Sign up

Existing user? Sign in

If \(\log{x} = b - \log{n}\), find \(x\)

Note by Cedie Camomot 1 year, 2 months ago

Sort by:

\( \log{x} = b - \log{n} \implies x= 10^{b-\log{n}} \\ \boxed{ x = \dfrac{10^{b}}{n} } \) – Sambhrant Sachan · 1 year, 2 months ago

Log in to reply

Logx=b-logn Logx+logn=b Log(xn) =b xn=10^b X=10^b/n – Ayanlaja Adebola · 1 year, 2 months ago

10^b/n – Ayanlaja Adebola · 1 year, 2 months ago

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewest\( \log{x} = b - \log{n} \implies x= 10^{b-\log{n}} \\ \boxed{ x = \dfrac{10^{b}}{n} } \) – Sambhrant Sachan · 1 year, 2 months ago

Log in to reply

Logx=b-logn Logx+logn=b Log(xn) =b xn=10^b X=10^b/n – Ayanlaja Adebola · 1 year, 2 months ago

Log in to reply

10^b/n – Ayanlaja Adebola · 1 year, 2 months ago

Log in to reply