×

# Need help proving!

$I=\displaystyle \int^{b}_{a}\dfrac{x^{n-1}\{(n-2)x^2+(n-1)(a+b)x+nab\}}{(x+a)^2(x+b)^2}dx$

Prove that $$I=\dfrac{b^{n-1}-a^{n-1}}{2(a+b)}$$.

Note by Akshat Sharda
4 months, 1 week ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Observe that $$(x+b)^2 - (x+a)^2 = (b-a)(2x+a+b)$$. Now

\begin{align} I &= \int_a^b \dfrac{x^{n-1} \left\{ (n-2)x^2 + (n-1)(a+b)x + nab \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{b-a}{b-a} \cdot \int_a^b \dfrac{x^{n-1} \left\{ (n-2)x^2 + (n-1)(a+b)x + nab \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{b-a}{b-a} \cdot \int_a^b \dfrac{x^{n-1} \left\{ n(x^2 + (a+b)x + ab) - x(2x+a+b) \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \dfrac{x^{n-1} \left\{ (b-a)n(x+a)(x+b) - x(b-a)(2x+a+b) \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \dfrac{x^{n-1} \left\{ (b-a)n(x+a)(x+b) - x((x+b)^2 - (x+a)^2) \right\}}{(x+a)^2 (x+b)^2} \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \left[ \dfrac{n(b-a)x^{n-1}}{(x+a)(x+b)} - x^n \left\{ \dfrac{1}{(x+a)^2} - \dfrac{1}{(x+b)^2} \right\} \right] \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \left[ nx^{n-1} \left\{ \dfrac{1}{x+a} - \dfrac{1}{x+b} \right\} - x^n \left\{ \dfrac{1}{(x+a)^2} - \dfrac{1}{(x+b)^2} \right\} \right] \ \mathrm{d}x \\ &= \dfrac{1}{b-a} \cdot \int_a^b \mathrm{d} \left( x^n \left\{ \dfrac{1}{x+a} - \dfrac{1}{x+b} \right\} \right) \\ &= \dfrac{1}{b-a} \cdot \left( x^n \left\{ \dfrac{1}{x+a} - \dfrac{1}{x+b} \right\} \right) {\huge |}_a^b \\ &= \dfrac{x^n}{(x+a)(x+b)} {\huge |}_a^b \\ &= \boxed{\dfrac{b^{n-1} - a^{n-1}}{2(a+b)}} \end{align}

- 4 months ago

WHAT THE HECK IS THAT! I know its calculus but that is a very long equation.

- 3 months, 3 weeks ago

Well for a math lover like me, I like to deal with beautiful long expressions that turn finally to a small answer.

- 3 months, 3 weeks ago

Really good solution! (+0!)

- 4 months ago

Haha! :P

- 4 months ago

Great solution! (+1)

- 4 months ago

Thank you. :)

- 4 months ago

Are you also preparing for JEE?

- 4 months ago

Yes. I'm studying in FIITJEE at Raipur, CG.

- 4 months ago

Hello, Some of the important books for preparing JEE Maths are ML KHANNA IA MARRON for basic concepts SL Loney for Coordinate geometry
SL Loney for Trigonometry Hall knight for Higher Algebra You must also check out for [url="https://scoop.eduncle.com/jee-advanced-exam-date-notification"] </a>JEE Advanced Date 2018 [/url]

- 3 months, 3 weeks ago