Waste less time on Facebook — follow Brilliant.
×

Need help with this calculus problem

Given \(\displaystyle \pi = 2\int_{-1}^{1} \! \sqrt{1-x^2} \, \mathrm{d}x\), use properties of integrals to compute the definite integral,

\(\displaystyle A = \int_{-2}^{2} \! (x-3) \sqrt{4-x^2} \, \mathrm{d}x\)

(Source: Tom Apostol - Calculus Volume 1)

Note by Danish Mohammed
3 years, 11 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Got it finally! :D \(\displaystyle \int_ {-2}^2 (x - 3)\sqrt {4 - x^2}\, dx\)

\(=2 \displaystyle \int_{-2}^2 (x-3) \sqrt{1-\left(\frac{x}{2}\right)^2} \, dx\)

\(=4 \displaystyle \int_{-1}^1 (2 x-3) \sqrt{1-x^2} \, dx\)

\(=8 \displaystyle \int_{-1}^1 x \sqrt{1-x^2} \, dx-12 \int_{-1}^1 \sqrt{1-x^2} \, dx\)

\(=8(0)-6 \pi\) (the first integral is zero as the integrand is odd)

\(=-6 \pi\)

Danish Mohammed - 3 years, 11 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...