Waste less time on Facebook — follow Brilliant.
×

Need solution

Find the positive integers \(n\) for which \(n+9,16n+9\) and \(27n+9\) are all perfect squares.

Note by Akshat Sharda
1 year, 7 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Let \(n+9=x^2\) \(16n+9=y^2\) and \(27n+9=z^2\) now multiply the first equation with 16 and subtract it with the second. You'll be left with \(16x^2-y^2=135\) Similarily with the first and third mulitiply with 27, you'll be left with \(27x^2-z^2=234\). For the last multiplication step multiply the second with 27 and and third with 16 you'll be left with \(27y^2-16z^2=99\) now \(27y^2-16z^2+16x^2-y^2=234=27x^2-z^2\) By arranging that we get \(26y^2=15z^2+11x^2\) Now the obvious solution is \(x=y=z=1\) which leaves us with a contradiction that no such integers n exist. However I am not sure that there are no more solutions to this equation(I haven't come across that field of study yet!) Good luck I hope I helped

Dragan Marković - 1 year, 7 months ago

Log in to reply

Nice sol.+1..how did u think of that?

Rishabh Tiwari - 1 year, 7 months ago

Log in to reply

Well actually with elimination. I have 2 appoaches to such problems. Either factorization or eliminating the unknowns. Factorization failed horribly i got nothing from it so i tried this way and ended up with the final equation. So i guess the factroization didn't fail that horribly? And this method was way shorter to write ;)

Dragan Marković - 1 year, 7 months ago

Log in to reply

Hey! See this, \(n=280\) satisfies.

Akshat Sharda - 1 year, 7 months ago

Log in to reply

Wow did some more analysis. If we can prove that \(7y=5z+2x 《》25y=30z-55x\) we would get 280 for n. This is intriguing 7=5+2 and 25=55-30!!!!

Dragan Marković - 1 year, 7 months ago

Log in to reply

It is the solution to my equation as well!!! I don't know how to get 17 67 and 87 though we haven't done that in school yet. Maybe someone like Calvin Lin could help us with that?

Dragan Marković - 1 year, 7 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...