New user? Sign up

Existing user? Sign in

Let F=0.841818181818181..... When F is written as a fraction in lowest terms,the denominator is exceeds the numerator by: a-13 b-14 c-29 d-87

Note by Mehdi Balti 2 years, 3 months ago

Sort by:

@Mehdi Balti

let \(F=0.8418181818...\)

so \(100F=84.18181818...\)

\( \implies 100F-F=(84.18181818...)-(0.8418181818...) \implies 99F=83.34 \implies F=\frac{8334}{9900}=\frac{463}{550}\)

\(550-463=87\) so the answer is \(d-87\)

Log in to reply

Thanks @Dedik KaitoKid Love you :)

\(F = 0.84\dot{1}\dot{8} = 0.84 + \dfrac{18}{9900} = \dfrac{0.84\times 9900+18}{9900} = \dfrac{8316+18}{9900} = \dfrac{8334}{9900} = \dfrac{463}{550}\)

\(\Rightarrow 550 - 463 = \boxed{87}\)

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewest@Mehdi Balti

let \(F=0.8418181818...\)

so \(100F=84.18181818...\)

\( \implies 100F-F=(84.18181818...)-(0.8418181818...) \implies 99F=83.34 \implies F=\frac{8334}{9900}=\frac{463}{550}\)

\(550-463=87\) so the answer is \(d-87\)

Log in to reply

Thanks @Dedik KaitoKid Love you :)

Log in to reply

\(F = 0.84\dot{1}\dot{8} = 0.84 + \dfrac{18}{9900} = \dfrac{0.84\times 9900+18}{9900} = \dfrac{8316+18}{9900} = \dfrac{8334}{9900} = \dfrac{463}{550}\)

\(\Rightarrow 550 - 463 = \boxed{87}\)

Log in to reply