# NMTC Inter Level Problem 13

$$a,b,c$$ are reals such that $$a-7b+8c=4$$ and $$8a+4b-c=7$$. The value of $$a^2-b^2+c^2$$ is

Options:

(A) $$0$$

(B) $$12$$

(C) $$8$$

(D) $$1$$

Note by Nanayaranaraknas Vahdam
3 years, 10 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

$$a+8c=4+7b$$ (rewriting equation 1)

$$8a-c=7-4b$$ (rewriting equation 2)

$$\therefore (a^2+64c^2+16ac)+(64a^2-16ac+c^2)= (16+56b+49b^2)+(49-56b+16b^2)$$

$$\therefore 65a^2+65c^2=65b^2+65$$

$$\therefore a^2-b^2+c^2=\boxed{1}$$

- 3 years, 10 months ago

here, it is clear that while a,b,c may vary, $$a^2-b^2+c^2$$ remains constant. So,take a=0. we get two variables and two solutions so find the corresponding value of b and c. now substitute in $$a^2-b^2+c^2$$ to get answer.

- 3 years, 5 months ago

Rewriting equation 1,

a = 4 - 8c + 7b

hence, 8a = 32 - 64c + 56b

substituitng this value in equation 2,

32 - 64c + 56b + 4b -c = 7

25 = 65c - 60b

5 = 13c - 12b

5 + 5(b-c) = 8c - 7b

substituting this value in equation 1,

a + 5(b-c+1) = 4

now, we can assume that b = c, therefore getting a = -1

Therefore, $${(-1)}^{2} - {b}^{2} + {b}^{2} = \boxed{1}$$

- 3 years, 9 months ago

Although my method is not the correct one, but it is fine ;) :P

- 3 years, 9 months ago

See that better and accurate one posted above ;)

- 3 years, 9 months ago