\[\dfrac{x^3}{z^3+x^2y}+\dfrac{y^3}{x^3+y^2z}+\dfrac{z^3}{y^3+z^2x}\geq \dfrac{3}{2}\]

Given that \(x,y\) and \(z\) are positive reals, prove the inequality above.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewestHere is a short solution I found:

\[\sum_{cyc} \dfrac{x^4}{xz^3+x^3z} \geq \dfrac{(x^2+y^2+z^2)^2}{2(xz^3+x^3y+y^3z)}\geq \dfrac{3}{2}\]

Hence it suffices to prove that

\[(x^2+y^2+z^2)^2\geq 3(xz^3+x^3y+y^3z)\]

Which is the famous Vasc's inequality

Log in to reply

Well, proving the Vasc Inequality might be slightly more difficult.

Log in to reply

To be exact Tremendously difficult

It does not yeild to most classical inequalities!

Log in to reply

Log in to reply

AoPS:

I found this amazingly elegant proof on\( \left(a^2 + b^2 + c^2\right)^2 - 3\left(a^3b + b^3c + c^3a\right) \\ = \frac {1}{2}\left( \left( a^{2} - 2ab + bc - c^{2} + ca\right) ^2 + \left(b^{2} - 2bc + ca - a^{2} + ab\right)^2 + \left( c^{2} - 2ca + ab - b^{2} + bc\right)^2 \right) \geq 0 \)

Log in to reply

Log in to reply

Log in to reply

Yep! Titu and Vasc killed this... =D

Log in to reply

@Gurīdo Cuong

Log in to reply

@MS HT @Sharky Kesa @ZK LIn

Log in to reply

You really want my long, expanded solution?

Log in to reply

I still haven't seen your long and expanded solution Sharky :P

Log in to reply

Log in to reply

Yes please.

Log in to reply

Yes :P

Log in to reply