Can you prove that \(\displaystyle \lim _{ x\rightarrow 1 }{ \frac { 1-{ x }^{ m } }{ 1-{ x }^{ n } } } =\frac { m }{ n } \) without using L'Hospital's rule for counting number m and n?

Hint: I did it by using the binomial theorem.

Bonus points if you can prove it for real number m and n, because my proof can't do that and I'd be interested to see it done.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestUsing the binomial theorem seems overkill. Writing it like this \( \dfrac{1-x^m}{1-x} * \dfrac{1-x}{1-x^n} \) makes a much shorter solution apparent.

Log in to reply

How about the extension to real numbers?

It seems like L'Hopital needs to be used.

Log in to reply

This solution goes up to rational numbers,

\(\displaystyle \lim _{ x\rightarrow 1 }{ \frac { 1-{ x }^{ m } }{ 1-{ x }^{ n } } } =\lim _{ x\rightarrow 1 }{ \frac { \left( 1-{ x }^{ \frac { 1 }{ k } } \right) \left( 1+{ x }^{ \frac { 1 }{ k } }+{ x }^{ \frac { 2 }{ k } }+\cdots +{ x }^{ km } \right) }{ \left( 1-{ x }^{ \frac { 1 }{ k } } \right) \left( 1+{ x }^{ \frac { 1 }{ k } }+{ x }^{ \frac { 2 }{ k } }+\cdots +{ x }^{ kn } \right) } } for\quad any\quad k\\ =\lim _{ x\rightarrow 1 } \frac { \left( 1+{ x }^{ \frac { 1 }{ k } }+{ x }^{ \frac { 2 }{ k } }+\cdots +{ x }^{ km } \right) }{ \left( 1+{ x }^{ \frac { 1 }{ k } }+{ x }^{ \frac { 2 }{ k } }+\cdots +{ x }^{ kn } \right) } \\ =\frac { km }{ kn } \\ =\frac { m }{ n } \)

Log in to reply

\(Let\quad x=1+h\quad where\quad h\quad tends\quad to\quad positive\quad zero.\\ Now\quad let's\quad solve\\ \lim _{ h\rightarrow 0 }{ \frac { 1+nh }{ 1+(n-k)h } } \\ =\lim _{ h\rightarrow 0 }{ \frac { 1+nh }{ 1+nh-kh } } \\ =\lim _{ h\rightarrow 0 }{ \frac { 1+nh-kh+kh }{ 1+nh-kh } } \\ =\lim _{ h\rightarrow 0 }{ \frac { 1+nh-kh }{ 1+nh-kh } } +\frac { kh }{ 1+nh-kh } \\ =1+\lim _{ h\rightarrow 0 }{ \frac { kh }{ 1+(n-k)h } } \\ =1+\frac { 1 }{ \lim _{ h\rightarrow 0 }{ \frac { 1+(n-k)h }{ kh } } } \\ =1+\frac { 1 }{ \lim _{ h\rightarrow 0 }{ \frac { 1 }{ kh } +\frac { n-k }{ k } } } \\ Since\quad 1/kh\quad will\quad tend\quad towards\quad infinity,\quad and\quad this\quad limit\quad is\quad independent\quad of\quad other\\ "tending0s\quad or\quad tending\quad infinities",\quad \frac { n-k }{ k } \quad (a\quad finite\quad value)\quad can\quad be\quad neglected.\\ =1+\frac { 1 }{ \lim _{ h\rightarrow 0 }{ \frac { 1 }{ kh } } } \\ =1+kh\\ \\ So,\quad \frac { 1+nh }{ 1+(n-k)h } \sim 1+kh\quad as\quad h\quad tends\quad to\quad 0.\\ So,\quad \frac { 1+ah }{ 1+(a-n)h } X\frac { 1+(a-m)h }{ 1+ah } =\frac { 1+(a-m)h }{ 1+(a-n)h } \\ So,\quad \frac { 1+nh }{ 1+mh } =\frac { 1+(a-m)h }{ 1+(a-n)h } \\ Put\quad a=n,\\ \frac { 1+nh }{ 1+mh } =1+(n-m)h\\ If\quad n-m\quad is\quad constant,\quad then\quad \frac { 1+nh }{ 1+mh } \quad is\quad constant.\\ So\quad \frac { 1+(m+k)h }{ 1+mh } =\frac { 1+(m+2k)h }{ 1+(m+k)h } .\quad Put\quad m=0\\ 1+kh=\frac { 1+2kh }{ 1+kh } \\ { (1+kh) }^{ 2 }=1+2kh\\ Put\quad k=1\\ \\ We\quad can\quad easily\quad show\quad these\\ { (1+h) }^{ 2 }=1+2h\\ { (1+h) }^{ 4 }=1+4h\\ \\ { (1+(1/2)h) }^{ 2 }=1+h\\ So,\quad { (1+h) }^{ 1/2 }=1+1/2h\\ \^ \^ \quad I\quad did\quad this\quad just\quad to\quad show\quad it\quad works\quad for\quad fractions\quad also.\\ \\ So,\quad { x }^{ n }=1+nh\quad as\quad x\quad tends\quad to\quad 1\quad and\quad h\quad tends\quad to\quad 0.\\ So\quad \frac { 1-{ x }^{ m } }{ 1-{ x }^{ n } } =\frac { 1-(1+mh) }{ 1-(1+nh) } =\boxed { \frac { m }{ n } } \)

Log in to reply

Seems hardcore, but I'm a little confused by how you defined your variables at the beginning of the proof. Am I missing something?

Log in to reply

I am sorry, this is a bit confusing because I used "m" and "n" in the beginning also and the end also, but they have completely different roles

Log in to reply

well one can easily use taylor series, but a taylor series expansion is in a way equivalent to L'hospital rule when you really think about it, so would you accept that ?

\(\lim _{ x-->1 }{ \frac { 1-(1+(x-1))^{ m } }{ 1-(1+(x-1))^{ n } } \quad \simeq \quad \frac { 1-(1+m(x-1)) }{ 1-(1+n(x-1)) } =\frac { m }{ n } } \)

Log in to reply

I suppose most of math is pretty much equivalent- All this stuff is derived from limits, right? I think that counts.

Log in to reply

let S=limit as x tends to 1, (1-x^m)/(1-x^n) =limit as p tends to zero (1-e^pm)/(1-e^pn) ,where e^p=x.

applying expansion for e^pm and e^pn in numerator and denominator, S=lim as p tends to zero, (1-(1 + pm/1 + pm^2/2x1 + .........))/ (1-(1+ pn/1 + pn/2x1 +......)) , 1- 1 =0, in numerator and denominator , then taking ' m 'and 'n' outside from numerator and denominator , and substituting p=0 for rest of values, we get m/n. :) .pls correct me frnds, if there is any mistakes in my proof.

Log in to reply

@ Archit Boobna - " Since 1/kh will tend towards infinity..." You need grouping symbols around kh when it is written out horizontally, because of the Order of Operations:

1/(kh)

"We can easily show these (1+h)^2 = 1 + 2h (1+h)^4 = 1 + 4h (1+(1/2)h)^2 = 1 + h"

The above are not true. You cannot use equalities. You can use the equivalents of "leads to."

Log in to reply