Waste less time on Facebook — follow Brilliant.
×

Nothing out of order?

Help me arrange \(180^{4}\),\(90^{8}\),\(60^{12}\),\(40^{18}\),\(30^{24}\),\(15^{48}\),\(10^{72}\),\(5^{144}\),\(4^{180}\),\(3^{240}\),\(80^{9}\),\(72^{10}\) in \[\color{BLUE}{\huge{ascending }}\]order.

Note by Bryan Lee Shi Yang
2 years, 10 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Take the \( 720 \) th root of all numbers. Then, all the terms come into the form of \( x^{1/x} \). Since it is a decreasing function for \( x > e \), if \( y > x > e \), then \( x^{1/x} > y^{1/y} \). Therefore, the order is \( 3^{1/3} > 4^{1/4}> ... > 180^{1/180} \). Raising each term to the \( 720 \)th power, \( 3^{240} > 4^{180} > ... > 180^4 \)

Siddhartha Srivastava - 2 years, 10 months ago

Log in to reply

First take LCM of all the powers and then bring all the numbers in the power equal to LCM which is 720. Then the arrangement becomes 3^240,4^180,5^144,10^72,15^48, 30^24,40^18,60^12,72^10,80^9,90^8,180^4

Aditya Chauhan - 2 years, 9 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...