Waste less time on Facebook — follow Brilliant.
×

Number-organized for grade 10

\[\left ( ab+bc+ca \right )\left[\frac{1}{a(a+c)}+\frac{1}{b(b+a)}+\frac{1}{c(c+b)}\right]\]

Let a,b,c are reals possitive number. Find the minimum of the expression above.

Note by Ms Ht
1 year, 10 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Expanding and simplifying,we get: \[\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}+\dfrac{c}{a+c}+\dfrac{a}{b+a}+\dfrac{b}{c+b}\] Now applying titu's lemma ,we get: \[\dfrac{b}{a}+\dfrac{c}{b}+\dfrac{a}{c}+\dfrac{c}{a+c}+\dfrac{a}{b+a}+\dfrac{b}{c+b}\\ =\dfrac{b^2}{ab}+\dfrac{c^2}{bc}+\dfrac{a^2}{ac}+\dfrac{c^2}{ac+c^2}+\dfrac{a^2}{ab+a^2}+\dfrac{b^2}{bc+b^2}\\ \geq \frac{(b+c+a+c+a+b)^2 }{2(ab+ac+bc)+a^2+b^2+c^2} =\frac{2^2(a+b+c)^2}{(a+b+c)^2}=\boxed{4}\]

Abdur Rehman Zahid - 1 year, 10 months ago

Log in to reply

While you did prove that

\((ab+bc+ca)(\frac{1}{a(a+c)}+\frac{1}{b(b+a)}+\frac{1}{c(c+b)})\geq4\)

you did not find the minimum of the expression, since 4 is not a possible value. You can see that 4 is not possible if you look at the requirements for equality when using Titu's Lemma.

Mark Gilbert - 1 year, 10 months ago

Log in to reply

Oops, forgot. Thanks for telling

Abdur Rehman Zahid - 1 year, 10 months ago

Log in to reply

First assume WLOG that a>=b>=c; now a+b>=a+c>=b+c; now when we take the inverses of both sequences; the order changes(1/a and 1/(a+b)) sequence. So apply rearrangement inequality to minimize the expression in second bracket (like club 1/c with 1/(a+b)). Write expression in first bracket as 1/2[a(b+c) + b(c+a) + c(a+b)] and now apply Cauchy Schwarz ineq. to get the result i.e. minimum value is 9/2.

Siddharth Kumar - 11 months, 3 weeks ago

Log in to reply

I think the answer is 4.5

Ms Ht - 1 year, 10 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...