Number Theory #4

Let \(n\) be a positive integer such that \(2n+1\) and \(3n+1\) are both squares. Prove that \(40|n\).

Note by Victor Loh
3 years, 11 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

It suffices to prove \(5\mid n,8\mid n\).

Given that \(2n+1=x^2, 3n+1=y^2\), If we add the two equations we get: \(5n+2=x^2+y^2\Rightarrow x^2+y^2\equiv 2\pmod 5\), since the quadratic residues of mod \(5\) are\(0,1,4\), we can check that only \(x^2\equiv y^2\equiv 1\) works, therefore \(2n\equiv 1-1\equiv 0\pmod 5\Rightarrow 5\mid n\)

The same analysis can be done for \(8\), but we will multiply the second equation by \(2\) first and then add: \(8n+3=x^2+2y^2\Rightarrow x^2+2y^2\equiv 3\pmod 8\), since the quadratic residues of mod \(8\) are \(0,1,4\), we can check that only \(x^2\equiv y^2\equiv 1\) works again, which means \(3n\equiv 1-1\equiv 0\pmod 8\Rightarrow 8\mod n\) and we are done.

Xuming Liang - 3 years, 11 months ago

Log in to reply

Great!

Victor Loh - 3 years, 11 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...