Number theory

Show that a perfect square cannot end with digits 2,3 or 7?

Note by Goutam Narayan
4 years, 5 months ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

We look modulo 10.A number can give remainder 0,1,2...9 mod 10.After checking for all of these values, we see that none of them are $$\equiv$$ to 2,3 or 7 (mod 10)

- 4 years, 5 months ago

can u plz show it

- 4 years, 5 months ago

Well ,when a number $$n=10k+r$$, then $$n^2=100k^2 + 20kr + r^2 \equiv r^2 \pmod{10}$$.Now for

$$r=1, n^2\equiv 1^2 \equiv 1\pmod {10}$$

$$r=2, n^2\equiv 2^2 \equiv 4 \pmod {10}$$

$$r=3, n^2\equiv 3^2 \equiv 9 \pmod{10}$$

$$r=4, n^2\equiv 4^2 \equiv 6 \pmod{10}$$

$$r=5, n^2\equiv 5^2 \equiv 5 \pmod{10}$$

$$r=6, n^2\equiv 6^2 \equiv 6 \pmod{10}$$

$$r=7, n^2\equiv 7^2 \equiv 9 \pmod{10}$$

$$r=8, n^2\equiv 8^2 \equiv 4 \pmod{10}$$

$$r=9, n^2\equiv 9^2 \equiv 1 \pmod{10}$$

- 4 years, 5 months ago

thank u very much///

- 4 years, 5 months ago