Waste less time on Facebook — follow Brilliant.
×

On divergence of Series

In this note I will prove that the series \({ \left( { S }_{ n } \right) }_{ n\ge 1 }\) given by \[{ S }_{ n }=\sum _{ r=1 }^{ n }{ \frac { 1 }{ r } } \forall n\in N\] is divergent. If we can find out a divergent sub-series of \({ \left( { S }_{ n } \right) }_{ n\ge 1 }\), we can say that \({ \left( { S }_{ n } \right) }_{ n\ge 1 }\) diverges. For that we consider the sub-series \({ \left( { S }_{ { 2 }^{ n } } \right) }_{ n\ge 1 }\). We then observe that \[{ S }_{ { 2 }^{ n } }=\sum _{ r=1 }^{ { 2 }^{ n } }{ { \frac { 1 }{ r } } } \\ =1+\frac { 1 }{ 2 } +\left( \frac { 1 }{ 3 } +\frac { 1 }{ 4 } \right) +\left( \frac { 1 }{ 5 } +\frac { 1 }{ 6 } +\frac { 1 }{ 7 } +\frac { 1 }{ 8 } \right) +...+\left( \frac { 1 }{ { 2 }^{ n-1 }+1 } +\frac { 1 }{ { 2 }^{ n-1 }+2 } +...+\frac { 1 }{ { 2 }^{ n } } \right) \\ >1+\frac { 1 }{ 2 } +\left( \frac { 1 }{ 4 } +\frac { 1 }{ 4 } \right) +\left( \frac { 1 }{ 8 } +\frac { 1 }{ 8 } +\frac { 1 }{ 8 } +\frac { 1 }{ 8 } \right) +...+\left( \frac { 1 }{ { 2 }^{ n } } +\frac { 1 }{ { 2 }^{ n } } +...\left( { 2 }^{ n-1 }\quad times \right) ...+\frac { 1 }{ { 2 }^{ n } } \right) \\ =1+\left( \frac { 1 }{ 2 } +\frac { 1 }{ 2 } +...\left( n\quad times \right) ...+\frac { 1 }{ 2 } \right) \\ =1+\frac { n }{ 2 } \] Hence, as the sequence \({ \left( 1+\frac { n }{ 2 } \right) }_{ n\ge 1 }\) diverges, the sub-series \({ \left( { S }_{ { 2 }^{ n } } \right) }_{ n\ge 1 }\) and hence the series \({ \left( { S }_{ n } \right) }_{ n\ge 1 }\) diverges.

Note by Kuldeep Guha Mazumder
1 year, 11 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

There are no comments in this discussion.

×

Problem Loading...

Note Loading...

Set Loading...