Find the value of

\(\dfrac{3}{4}+\dfrac{3}{28}+\dfrac{3}{70}+\dfrac{3}{130}+...............+\dfrac{3}{9700}\)

Please give an easy method.

Fast.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewest\(\frac{3}{4} + \frac{3}{28} + \frac{3}{70} + \frac{3}{130} + \ldots + \frac{3}{9700} \\ \frac{3}{1\times 4}+\frac{3} {4\times 7}+\frac{3}{7\times 10}+\frac{3}{10\times 13}+\ldots+\frac{3}{97\times 100} \\ \left(1-\frac{1} {4}\right)+\left(\frac{1} {4}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1} {10}\right)+\ldots+\left(\frac{1}{97}-\frac{1} {100}\right) \\ 1-\frac{1} {100}=\frac{99} {100}=\boxed{0.99}\)

Log in to reply

Yay to the Telescoping Series - Sum!

Log in to reply

Sir, is there another easy way ?

Log in to reply

Thank you very much.

Is there another way ?

Log in to reply