Find the value of

\(\dfrac{3}{4}+\dfrac{3}{28}+\dfrac{3}{70}+\dfrac{3}{130}+...............+\dfrac{3}{9700}\)

Please give an easy method.

Fast.

Find the value of

\(\dfrac{3}{4}+\dfrac{3}{28}+\dfrac{3}{70}+\dfrac{3}{130}+...............+\dfrac{3}{9700}\)

Please give an easy method.

Fast.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewest\(\frac{3}{4} + \frac{3}{28} + \frac{3}{70} + \frac{3}{130} + \ldots + \frac{3}{9700} \\ \frac{3}{1\times 4}+\frac{3} {4\times 7}+\frac{3}{7\times 10}+\frac{3}{10\times 13}+\ldots+\frac{3}{97\times 100} \\ \left(1-\frac{1} {4}\right)+\left(\frac{1} {4}-\frac{1}{7}\right)+\left(\frac{1}{7}-\frac{1} {10}\right)+\ldots+\left(\frac{1}{97}-\frac{1} {100}\right) \\ 1-\frac{1} {100}=\frac{99} {100}=\boxed{0.99}\) – Akshat Sharda · 1 year, 8 months ago

Log in to reply

Telescoping Series - Sum! – Calvin Lin Staff · 1 year, 8 months ago

Yay to theLog in to reply

– Sai Ram · 1 year, 7 months ago

Sir, is there another easy way ?Log in to reply

Is there another way ? – Sai Ram · 1 year, 8 months ago

Log in to reply