$$\int \mathrm{e}^x tan^{-1}x\mathrm{d}x$$

Note by Krishna Jha
5 years, 1 month ago

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$...$$ or $...$ to ensure proper formatting.
2 \times 3 $$2 \times 3$$
2^{34} $$2^{34}$$
a_{i-1} $$a_{i-1}$$
\frac{2}{3} $$\frac{2}{3}$$
\sqrt{2} $$\sqrt{2}$$
\sum_{i=1}^3 $$\sum_{i=1}^3$$
\sin \theta $$\sin \theta$$
\boxed{123} $$\boxed{123}$$

Sort by:

Here $$tan^{-1}x$$ is the inverse tangent function and can also be written as $$arctan(x)$$.

- 5 years, 1 month ago

Why not use integration by parts

- 5 years, 1 month ago

Use it and show me how do u do it...

- 5 years, 1 month ago

$\frac{1}{2} e^i i \text{Ei}(-i+x)-\frac{1}{2} i e^{-i} \text{Ei}(i+x)+e^x \tan ^{-1}(x)$

- 5 years, 1 month ago

HOW???

- 5 years, 1 month ago

Wolfram | Alpha

- 5 years, 1 month ago

You should check this.

- 5 years, 1 month ago

Pls tell me how to solve this integral with the Ei(x) function..

- 5 years, 1 month ago

Take z=arctan(x), then take dz =dx/(1+x^2)=dx/(1+tan^2z)=dx/(sec^2x)..................so dx=dz(sec^2z)...............so the integral reduces to [ integral e^(tan(z)) sec^2(z)) dz.....now substitute y=tan(z).....and tada u'll ger it!! Hope u understand it.........

(N.B..here sec^2(z) means sec squared z.................okay?)

- 5 years, 1 month ago

Man... You missed out a z....the integral is $$\int\mathrm{e}^{tanz}z(sec^{2}z)\mathrm{d}z$$.... coz there was an $$arctan(x)$$ there... u have to back substitute $$arctan(x)=z$$... Now please solve this further... :-P..

- 5 years, 1 month ago