Pre-RMO 2014/15

Let \(XOY\) be a triangle with \(\angle XOY = 90^\circ\). Let \(M\) and \(N\) be the midpoints of legs \(OX\) and \(OY\), respectively. Suppose that \(XN = 19\) and \(YM = 22\). What is \(XY\)?


This note is part of the set Pre-RMO 2014

Note by Pranshu Gaba
4 years ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

is XY 26????

Nitish Deshpande - 4 years ago

Log in to reply

Yes .XY=26 is the correct answer.

Devdutt Kar - 2 months ago

Log in to reply

Let \(XM=MO=a\) and \(ON=NY=b\)

By applying PT, we get

\(4a^{2}+b^{2}=19^{2} \rightarrow Eq.1\)

\(a^{2}+4b^{2}=22^{2} \rightarrow Eq.2\)

Eq.1+Eq.2

\(a^{2}+b^{2}=\frac{19^{2}+22^{2}}{5}=13^{2}\)

\( \Rightarrow \sqrt{4a^{2}+4b^{2}}=XY=\sqrt{4× 169}=\boxed{26}\)

Aneesh Kundu - 4 years ago

Log in to reply

Length of XY is 26

Moumik Maitra - 3 years, 10 months ago

Log in to reply

XY = 26

KahYeen Lai - 3 years, 10 months ago

Log in to reply

XY=26

KahYeen Lai - 3 years, 10 months ago

Log in to reply

26

Unity 002 - 3 years, 10 months ago

Log in to reply

26

Sudharshan Sharma - 3 years, 10 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...