Waste less time on Facebook — follow Brilliant.
×

Primes and Functions

Let \(p\) be a prime number and let \(f(x)\) be a polynomial of degree \(d\) with integer coefficients such that:

(i) \(f(0) = 0, f(1) = 1\)

(ii) for every positive integer \(n\), the remainder upon division of \(f(n)\) by \(p\) is either 0 or 1.

Prove the \(d \geq p - 1\).

Note by Sharky Kesa
3 years, 7 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

I am going to prove a weaker result which does not use condition (i).

Consider the polynomial \(g(x)=f(x)(f(x)-1)\) of degree \(2d\). According to (ii) \(g(x) \mod(p) = 0\) at each of \(x=0,1,2,3,\ldots, p-1\). Viewing \(g(x)\) as a polynomial over the field \(\mathbb{F}_p\), by fundamental theorem of algebra, we immediately conclude that \(2d \geq p\), i.e. \(d\geq \frac{p}{2}\).

Abhishek Sinha - 3 years, 6 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...