Let \(p\) be a prime number and let \(f(x)\) be a polynomial of degree \(d\) with integer coefficients such that:

(i) \(f(0) = 0, f(1) = 1\)

(ii) for every positive integer \(n\), the remainder upon division of \(f(n)\) by \(p\) is either 0 or 1.

Prove the \(d \geq p - 1\).

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestI am going to prove a weaker result which does not use condition (i).

Consider the polynomial \(g(x)=f(x)(f(x)-1)\) of degree \(2d\). According to (ii) \(g(x) \mod(p) = 0\) at each of \(x=0,1,2,3,\ldots, p-1\). Viewing \(g(x)\) as a polynomial over the field \(\mathbb{F}_p\), by fundamental theorem of algebra, we immediately conclude that \(2d \geq p\), i.e. \(d\geq \frac{p}{2}\).

Log in to reply