Principle of Mathematical Induction?

( 666666n number of 6’s )2+888888n number of 8’s=4444442n number of 4’s\large (\ \underbrace{ 66666\ldots6 }_{n \text{ number of 6's}} \ )^2+ \underbrace{88888\ldots8}_{n \text{ number of 8's}}= \underbrace{44444\ldots4}_{2n \text{ number of 4's}}

Prove the above equation of positive integer nn.


Go through more proofs via Proofs - Rigorous Mathematics and enhance your mathematical growth!

Note by Sandeep Bhardwaj
4 years, 4 months ago

No vote yet
1 vote

  Easy Math Editor

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

  • Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
  • Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
  • Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.
  • Stay on topic — we're all here to learn more about math and science, not to hear about your favorite get-rich-quick scheme or current world events.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 2×3 2 \times 3
2^{34} 234 2^{34}
a_{i-1} ai1 a_{i-1}
\frac{2}{3} 23 \frac{2}{3}
\sqrt{2} 2 \sqrt{2}
\sum_{i=1}^3 i=13 \sum_{i=1}^3
\sin \theta sinθ \sin \theta
\boxed{123} 123 \boxed{123}

Comments

Sort by:

Top Newest

66666n numbers of 6’s=69(10n1)=23(10n1) \underbrace{ 6666\ldots6 }_{n \text{ numbers of 6's}} = \dfrac{6}{9}(10^n - 1) = \dfrac{2}{3}(10^n - 1) 88888n numbers of 8’s=89(10n1) \underbrace{8888\ldots8 }_{n \text{ numbers of 8's}} = \dfrac{8}{9}(10^n - 1) 444442n numbers of 4’s=49(102n1) \underbrace{ 4444\ldots4 }_{2n \text{ numbers of 4's}} = \dfrac{4}{9}(10^{2n} - 1)

So, (66666n numbers of 6’s)2+88888nnumber of 8’s=(23(10n1))2+89(10n1) (\underbrace{ 6666\ldots6 }_{n \text{ numbers of 6's}})^2 + \underbrace{8888 \ldots8}_{n \text{number of 8's}} = (\dfrac{2}{3}(10^n - 1))^{2} + \dfrac{8}{9}(10^n - 1) =49(102n2×10n+1+2×10n2)=\dfrac{4}{9}(10^{2n} - 2 \times 10^n +1 + 2 \times 10^n -2) =49(102n1)=\dfrac{4}{9}(10^{2n} - 1) =444442n number of 4’s=\underbrace{4444 \ldots 4}_{2n \text{ number of 4's}}

Hence, proved.

Surya Prakash - 4 years, 4 months ago

Log in to reply

Great! Well done!

Sandeep Bhardwaj - 4 years, 4 months ago

Log in to reply

Thank u

Surya Prakash - 4 years, 4 months ago

Log in to reply

@Surya Prakash For the sake of the title of this note, can you prove this using mathematical induction?

Pi Han Goh - 4 years, 4 months ago

Log in to reply

@Pi Han Goh Hi @Pi Han Goh , I have even posted the solution using Induction. By the way can u please add me as your friend in Facebook. It's request from me.

Surya Prakash - 4 years, 4 months ago

Log in to reply

Observe that 62+8=44 6^2 + 8 = 44. So, it is true for n=1n=1.

Let us suppose that for some kk,

(66666k numbers of 6’s)2+88888k numbers of 8’s=444442k numbers of 4’s(\underbrace{ 6666\ldots6 }_{k \text{ numbers of 6's}})^{2} + \underbrace{8888\ldots8 }_{k \text{ numbers of 8's}} = \underbrace{ 4444\ldots4 }_{2k \text{ numbers of 4's}}

So, Consider

(66666k+1 numbers of 6’s)2+88888k+1 numbers of 8’s(\underbrace{ 6666\ldots6 }_{k+1 \text{ numbers of 6's}})^{2} + \underbrace{8888\ldots8 }_{k+1 \text{ numbers of 8's}} =(6×10k+66666k numbers of 6’s)2+8×10k+88888k numbers of 8’s=(6 \times 10^{k} +\underbrace{ 6666\ldots6 }_{k \text{ numbers of 6's}})^{2} + 8 \times 10^{k} +\underbrace{8888\ldots8 }_{k \text{ numbers of 8's}} =36×102k+2×6×10k×66666k numbers of 6’s+(66666k numbers of 6’s)2+8×10k+88888k numbers of 8’s=36 \times 10^{2k} + 2 \times 6 \times 10^{k} \times \underbrace{ 6666\ldots6 }_{k \text{ numbers of 6's}} +(\underbrace{ 6666\ldots6 }_{k \text{ numbers of 6's}})^{2} + 8 \times 10^{k} + \underbrace{8888\ldots8 }_{k \text{ numbers of 8's}} =36×102k+2×6×10k×66666k numbers of 6’s+8×10k+444442k numbers of 4’s= 36 \times 10^{2k} + 2 \times 6 \times 10^{k} \times \underbrace{ 6666\ldots6 }_{k \text{ numbers of 6's}} + 8 \times 10^{k} +\underbrace{ 4444\ldots4 }_{2k \text{ numbers of 4's}} =36×102k+2×6×10k×69(10k1)+8×10k+444442k numbers of 4’s= 36 \times 10^{2k} + 2 \times 6 \times 10^{k} \times \dfrac{6}{9}(10^{k} - 1) + 8 \times 10^{k} +\underbrace{ 4444\ldots4 }_{2k \text{ numbers of 4's}} =44×102k+444442k numbers of 4’s= 44 \times 10^{2k} + \underbrace{ 4444\ldots4 }_{2k \text{ numbers of 4's}} =444442k+2 numbers of 4’s= \underbrace{ 4444\ldots4 }_{2k+2 \text{ numbers of 4's}}

So, by Principle of Finite Mathematical Induction\text{Principle of Finite Mathematical Induction}. The given statement is true.

Surya Prakash - 4 years, 4 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...