*error* started?
\[(x+1)^2 = x^2+2x+1\]
**Step 1**: \[(x+1)^2 - (2x+1) = x^2\]
**Step 2**: \[(x+1)^2 - (2x+1)-x(2x+1)=x^2-x(2x+1)\]
**Step 3**: \[(x+1)^2 -(x+1)(2x+1)+ \frac{1}{4}(2x+1)^2 = x^2 -x(2x+1) + \frac{1}{4}(2x+1)^2\]
**Step 4**: \[ [(x+1) - \frac{1}{2}(2x+1)]^2=[x- \frac{1}{2}(2x+1)]^2\]
**Step 5**: \[(x+1) - \frac{1}{2}(2x+1) = x - \frac{1}{2}(2x+1)\]
**Step 6**: \[x+1 = x\]
** Therefore**, \(1 = 0\)

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestStep 5 corrected to: (x + 1) - (1/ 2) (2 x + 1) = (1/ 2) (2 x + 1) - x would be all right.

Log in to reply

At step5

Log in to reply