Waste less time on Facebook — follow Brilliant.
×

Proof problem

If \(a+b+c+d=0\),prove that: \[abc+bcd+cda+dab=\sqrt {(bc-ad)(ca-bd)(ab-cd)}.\]

Note by Rohit Udaiwal
11 months, 4 weeks ago

No vote yet
1 vote

Comments

Sort by:

Top Newest

write as \[a=-(b+c+d)\] \[a(bc+cd+db)+bcd=-((b+c+d)(bc+cd+db)-bcd)\] by daniel lui's identity this is \[-(b+c)(c+d)(d+b)\] this is \[-(-a-d)(-a-b)(-a-c)=(a+b)(a+c)(a+d)\] square \[((a+b)(a+d))((a+d)(a+c))((a+c)(a+b))=(a^2+(b+d)a+bd)(a^2+(d+c)a+dc)(a^2+(c+b)a+cb)\] \[=(a^2+(-a-c)a+bd)(a^2+(-a-b)a+dc)(a^2+(-a-d)a+cb)=(bd-ac)(dc-ab)(bc-ad)\] so \[abc+bcd+cda+dab=\pm\sqrt{(bd-ac)(dc-ab)(bc-ad)}\] note ther should pe \(\pm\) as the LHS can be negative. Aareyan Manzoor · 11 months, 4 weeks ago

Log in to reply

@Aareyan Manzoor Nice use of that identity!! Rohit Udaiwal · 11 months, 4 weeks ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...