Prove equality never occurs

Let \(\{a_i\}_{i=1}^m\) and \(\{b_i\}_{i=1}^n\) be non-negative integer sequences such that all elements in \(\{a_i\}_{i=1}^m \cup \{b_i\}_{i=1}^n\) are pairwise distinct.

Prove there are no solutions to \[\displaystyle\sum_{i=1}^m a_i^{a_i}=\sum_{i=1}^n b_i^{b_i}\]

Source: Own

Hints can be found on my AoPS thread

Note by Daniel Liu
4 years, 3 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Because I love rephrasing problems:

Imagine an infinite set of weights, having the weights \(1^1, 2^2, 3^3, 4^4, \ldots\) units of weight, one of each. You have a two-pan balance. You want to put some number of weights on each pan such that the two pans balance. Prove that the only solution is to leave both pans empty.

Ivan Koswara - 4 years, 3 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...