Waste less time on Facebook — follow Brilliant.
×

prove that isn't prime

Prove that \(14^{n}+ 11\) is never prime

Note by A K
3 years, 2 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

I am assuming that you wish this proved for integers \(n \ge 1\), (for \(14^{0} + 11 = 12\) is not prime).

If \(n\) is odd then the last digit of \(14^{n}\) will be \(4\) and thus the last digit of \(14^{n} + 11\) will be \(5\), implying that \(14^{n} + 11\) is divisible by \(5\).

If \(n\) is even then let \(n = 2k\) for some integer \(k\). Then \(14^{n} + 11 = 196^{k} + 11 = (195 + 1)^{k} + 11\), (A).

Now in the binomial expansion of \((195 + 1)^{k}\) we will have a factor of \(195\) in every term except for the term \(1^{k} = 1\). We can then write equation (A) as \(1 + 195*m + 11 = 12 + 195*m = 3*(4 + 65*m)\) for some integer \(m\). Thus in this case \(14^{n} + 11\) is divisible by \(3\).

So for all integers \(n \ge 1\) we can conclude that \(14^{n} + 11\) is not prime.

Brian Charlesworth - 3 years, 2 months ago

Log in to reply

Great proof! Although I think for the last half, you can look at the equation mod 3, and this get \((-1)^n-1 \pmod{3}\) which for all even n, we get \(1-1=0 \pmod{3}\). It's similar to your method but just a tad simplier.

Trevor Arashiro - 3 years, 2 months ago

Log in to reply

Good point. Also, for the first part we could have looked at the expression mod 5, to get \((-1)^{n} + 1 \equiv 0 \mod{5}\) for all odd n.

It takes a bit of intuition to guess at which mod values to 'filter' with, but it makes for a more elegant approach. :)

Brian Charlesworth - 3 years, 2 months ago

Log in to reply

14 gives remainder 2 when divided by 3.So,when n=1,2,3,4... , \(14^n\) will give remainder 2,1,2,1 .... So every even power gives remainder 1. This means 14^\(n\)+11 will be of the form 3m+12 which cant be a prime. 14 gives remainder 4 when divided by 5.when n=1,2,3,4...\(14^n\) will give rem. 4,1,4,1.. So every odd power gives remainder 4. this means \(14^n\)+11 will be of the form 5m+15 which cant be prime.

Rutwik Dhongde - 3 years, 1 month ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...