Waste less time on Facebook — follow Brilliant.
×

This problem appeared in the pre RMO test in my school How shall we solve this -

PROVE THAT

\(\frac{a^{2} +1}{b+c} +\frac{b^{2} +1}{a+c} +\frac{c^{2} +1}{b+a}\) >3 OR =3

Note by Avn Bha
3 years, 1 month ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Without loss of generality, Take a>b>c.

a^{2} + 1 > 2a - Similarly for all So I substitute 2a, 2b, 2c in the numerators The new sum acquired is lower than the original.

Now take 2 common and send it to the other side of the equation

This now reduces to Nesbitt's Inequality. Nesbitt's Inequality.

Proved.

[By the way even I am preparing for RMO, I think these inequalities are basic- -Nesbitt's Inequality -RMS>AM>GM>HM -Chebycheff Inequality -Rearrangement Inequality -Triangle Inequality ]

Dhruv Singh - 3 years, 1 month ago

Log in to reply

Nice reducing it to Nesbitt's Inequality.

Calvin Lin Staff - 3 years, 1 month ago

Log in to reply

:D I am getting into the mathematician grooves.

Dhruv Singh - 3 years ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...