Waste less time on Facebook — follow Brilliant.
×

series

\( S= \frac {1}{2\cdot4} + \frac {1\cdot3}{2\cdot4\cdot6} +\frac {1\cdot3\cdot5}{2\cdot4\cdot6\cdot8} \ldots n = ?\)

till n terms or till infinite

Note by Megh Parikh
3 years, 11 months ago

No vote yet
13 votes

Comments

Sort by:

Top Newest

Look at the binomial/Maclaurin expansion of \((1-x)^{\frac12}\) in the (valid) limit as \(x \to 1\). Mark Hennings · 3 years, 11 months ago

Log in to reply

till n terms \( [\frac{1}{2} - \frac{(2(n + 1)!)}{2^{2n +1}((n + 1)!)^2}]\) , till \(\infty\) \(\frac{1}{2} \) ? Jatin Yadav · 3 years, 11 months ago

Log in to reply

@Jatin Yadav Could you please give a solution? Krishna Jha · 3 years, 11 months ago

Log in to reply

Observe that: \(\frac{1}{2.4} + \frac{1.3}{2.4.6} + \frac{1.3.5}{2.4.6.8} + ... n\) terms

\(= \frac{\frac{1}{2}.\frac{1}{2}}{2!} + \frac{\frac{1}{2}.\frac{1}{2}.\frac{3}{2}}{3!} + ... n\) terms

\(= [-1 - (\frac{1}{2})(-1) - \frac{(\frac{1}{2})(\frac{1}{2} - 1)}{2!}(-1)^2 - \frac{(\frac{1}{2})(\frac{1}{2}-1)(\frac{1}{2}-1)}{3!}(-1)^3 - ... n\) terms \( ] + \frac{1}{2}\)

Hence, this is \((\frac{1}{2} - (1-x)^{\frac{1}{2}})\) as \(x \rightarrow 1\) with \(n \rightarrow \infty\). At \(n=\infty\), \(S=\frac{1}{2}\) Paramjit Singh · 3 years, 11 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...