Waste less time on Facebook — follow Brilliant.
×

Simple Integration 1.03

Evaluate the following integral (could get lengthy)

\(\int \frac{\sqrt{cos2x}}{sinx}dx\)

"Like" IF YOU SOLVE "Reshare" IF YOU COULDN'T

Note by Anirudha Nayak
3 years, 10 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

[ 1 ]

I = ∫ [ √( cos 2x ) / ( sin x ) ] dx

= ∫ (1/ sin x ) √[ (1-tan² x) / (1+tan² x) ] dx

= ∫ [ √(1-tan² x) / ( tan x ) ] dx ......................... (1) .........................................

Put ; t² = 1- tan² x.

Then : 2t. dt/dx = -2 tan x. sec² x

dx = -t dt / ( tan x. sec² x ) .........................................

From (1), then,

I = ∫ ( t / tan x ) ( -t dt / tan x sec² x)

= - ∫ { t² / [ tan² x. sec² x ] } dt

= - ∫ { t² / [ ( 1 - t² ) ( 1 + tan² x ) ] } dt

= - ∫ { t² / [ ( 1 - t² )( 1 + (1-t²)) ] } dt

= - ∫ { t² / [ (1 - t²)( 2 - t²) ] } dt

= - ∫ { [ 1 / (1-t²) + [ -2 / (2-t²) ] } dt ... by Partial Fractions

= - (1/2) ln | (1+t) / (1-t) | + 2(1/ 2√2) ln | (√2 + t) / (√2 - t) | + C, ... t = √(1-tan² x)

Mahmoud Hassona - 3 years, 8 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...