New user? Sign up

Existing user? Sign in

Prove that for any natural number \(n\) by mathematical induction that \(4^{n} +15n -1\) is divisible by 9.

Note by Deepansh Jindal 1 year, 4 months ago

Easy Math Editor

*italics*

_italics_

**bold**

__bold__

- bulleted- list

1. numbered2. list

paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)

> This is a quote

This is a quote

# I indented these lines # 4 spaces, and now they show # up as a code block. print "hello world"

2 \times 3

2^{34}

a_{i-1}

\frac{2}{3}

\sqrt{2}

\sum_{i=1}^3

\sin \theta

\boxed{123}

Sort by:

Let \(P_n \) be the proposition \( 9~|~4^{n}+15n-1\) for any natural number \(n\).

First, consider the base case where \(n = 1\). Observe that

\[ 4^{1} + 15 (1) - 1 = 4 + 15 - 1 = 18 \]

and that \(9\) divides \(18\). Then \(P_1\) is true.

Now, assume \(P_{k}\) is true for some \(k \in \text{domain},\) then \( 9 ~|~4^{n} + 15n - 1\).

We realize that \(4^{k+1}=4\times 4^{k} \). So

\[ \begin{array} { l l } 9~|~ 4^{k+1}+15k\times 4 - 1\times 4\\ 9~|~ 4^{k+1}+15k + 15 + (3 \times 15k - 15) -1 + (-1\times 3)\\ 9~|~ 4^{k+1}+15(k+1) -1 + (45k -18)\\ 9~|~ 4^{(k+1)}+15(k+1) -1. \end{array} \]

Hence \(P_{k}\) true \( \Rightarrow P_{k+1} \) true.

By mathematical induction, since the base case where \(n=1\) is true and \(P_{k}\) is true, \(P_{k+1}\) true. Therefore, \(P_{n}\) is true for all natural numbers \(n\).

Log in to reply

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestLet \(P_n \) be the proposition \( 9~|~4^{n}+15n-1\) for any natural number \(n\).

First, consider the base case where \(n = 1\). Observe that

\[ 4^{1} + 15 (1) - 1 = 4 + 15 - 1 = 18 \]

and that \(9\) divides \(18\). Then \(P_1\) is true.

Now, assume \(P_{k}\) is true for some \(k \in \text{domain},\) then \( 9 ~|~4^{n} + 15n - 1\).

We realize that \(4^{k+1}=4\times 4^{k} \). So

\[ \begin{array} { l l } 9~|~ 4^{k+1}+15k\times 4 - 1\times 4\\ 9~|~ 4^{k+1}+15k + 15 + (3 \times 15k - 15) -1 + (-1\times 3)\\ 9~|~ 4^{k+1}+15(k+1) -1 + (45k -18)\\

9~|~ 4^{(k+1)}+15(k+1) -1. \end{array} \]

Hence \(P_{k}\) true \( \Rightarrow P_{k+1} \) true.

By mathematical induction, since the base case where \(n=1\) is true and \(P_{k}\) is true, \(P_{k+1}\) true. Therefore, \(P_{n}\) is true for all natural numbers \(n\).

Log in to reply