**Question 1:**

The height of the center of mass is a mass-weighted sum of the coordinates of the individual centers of mass.

\[y_{CM} = \frac{y_1 M_1 + y_2 M_2 + y_3 M_3}{M_1 + M_2 + M_3}\]

Values of these quantities:

\[y_1 = 7R \hspace{1cm} M_1 = \frac{4}{3} \pi R^3 \rho_1 \\ y_2 = 4R \hspace{1cm} M_2 = \frac{32}{3} \pi R^3 \rho_2 \\ y_3 = R \hspace{1cm} M_3 = 8 R^3 \rho_3\]

Plugging in:

\[y_{CM} = \frac{7R \times \frac{4}{3} \pi R^3 \rho_1 + 4R \times \frac{32}{3} \pi R^3 \rho_2 + R \times 8 R^3 \rho_3}{\frac{4}{3} \pi R^3 \rho_1 + \frac{32}{3} \pi R^3 \rho_2 + 8 R^3 \rho_3 } = 4R \\ \frac{28}{3} \pi R^4 \rho_1 + \frac{128}{3} \pi R^4 \rho_2 + 8 R^4 \rho_3 = \frac{16}{3} \pi R^4 \rho_1 + \frac{128}{3} \pi R^4 \rho_2 + 32 R^4 \rho_3 \\ \frac{28}{3} \pi R^4 \rho_1 + 8 R^4 \rho_3 = \frac{16}{3} \pi R^4 \rho_1 + 32 R^4 \rho_3 \\ 4 \pi R^4 \rho_1 = 24 R^4 \rho_3 \\ \frac{\rho_1}{\rho_3} = \boxed{\frac{6}{\pi}} \]

**Question 2:**

The height of the center of mass is a length-weighted sum of the coordinates of the individual centers of mass of the straight and curved parts. We can use length instead of mass because of the uniform mass density per unit length.

\[y_{CM} = \frac{y_1 L_1 + y_2 L_2 }{L_1 + L_2 }\]

Straight Part:

\[L_1 = \pi R \hspace{1cm} y_1 = 0 \]

Curved Part:

\[L_2 = \pi R \hspace{1cm} y_2 = \frac{2R}{\pi} \]

Plugging in:

\[y_{CM} = \frac{0 \pi R + \frac{2R}{\pi} \pi R }{\pi R + \pi R} = \boxed{\frac{R}{\pi}}\]

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestCan you send the pdf of the paper and the name of the book in the background @Steven Chase

Log in to reply

I can't, because that image is all I have :)

Log in to reply

Woah so cengage is famous even in USA?Btw which cengage book are you using?Is it the same as the one used by Indians(IIT advanced ones)?

Log in to reply

These questions were sent to me by somebody else.

Log in to reply

oh alright.

Log in to reply