If ABCD is a quadrilateral in which AB+CD=BC+AD,prove that the bisectors of the angles of the quadrilateral meet in a point which is equidistant from the sides of quadrilateral.

Plz provide me the proof.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestConnect the angle bisectors of angle A and B. Call the intersection T. Draw perpendiculars down to AB, AD, DC , CB at points X,Y,Z,W. By properties of angle bisectors, we know that \(AX=AY = a, BX = BW = b.\) Additionally, TY=TX=TW=g. Let DY, DZ, ZC, CW, be c, d, e, f respectively. Note that from the condition, \[c+f=d+e. \]By Pythagorean theorem, \[TZ= x^2+c^2-d^2=x^2 + f^2 - e^2.\]From these two equations you get that \(c = d\) and \(e = f\) which implies that DT and TC are angle bisectors which completes our proof.

Log in to reply

What have you tried? Have you shown that the 4 angle bisectors meet at a unique point? That seems to be implicit in the problem.

Hint:Any point on the angle bisector is equidistant from both lines. Thus, once you've answered the uniqueness of intersection, you are done.Log in to reply

Thanks for help !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! Really Glad !

Log in to reply