Waste less time on Facebook — follow Brilliant.
×

Symmetric Inequality Problem

I am struggling with understanding https://nrich.maths.org/251.

To restate the problem,

If \(x\), \(y\) and \(z\) are real numbers such that: \(\begin{cases}x+y+z=5 \\ xy+yz+zx=3\end{cases}\) , What is the largest value that any one of these numbers can have?

In particular, I do not understand the first solution given, and while the second I am getting a grip with (creates a quadratic uses the discriminant inequality since \(x\), \(y\) and \(z\) are real numbers), would like to ask whether any classical inequalities can be used here, as I would be personally more satisfied with this.

The problem I had with applying inequalities I knew was that \(x\), \(y\) and \(z\) could be any real numbers, not just positive.

Any help/discussion would be much appreciated!

Note by Arthur Conmy
4 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

i m getting \(\frac{13}{3} \) as maximum value and -1 as minimum value

Vilakshan Gupta - 4 months ago

Log in to reply

Yep same here! What was your method?

Sathvik Acharya - 4 months ago

Log in to reply

but u said u are getting \(\frac{13}{2} \) . I used the same method which i referred to in the link i gave.

Vilakshan Gupta - 4 months ago

Log in to reply

@Vilakshan Gupta Oops! Sorry I am getting \(\frac{13}{3}\). I actually did not check the link out. Let me check it now

Sathvik Acharya - 4 months ago

Log in to reply

@Sathvik Acharya Ok. Tell me about your method please

Vilakshan Gupta - 4 months ago

Log in to reply

@Vilakshan Gupta Cauchy Schwarz inequality

Sathvik Acharya - 4 months ago

Log in to reply

@Sathvik Acharya same method as mine then? or in a different way?

Vilakshan Gupta - 4 months ago

Log in to reply

Hey buddy is the answer \(\frac{13}{2}\)?

Sathvik Acharya - 4 months ago

Log in to reply

okay ! great

Vilakshan Gupta - 4 months ago

Log in to reply

actually u have put a dot by mistake in front of 251

Vilakshan Gupta - 4 months ago

Log in to reply

The link u have referred is not opening, it says the page not found.However, u can see my solution to this problem : https://brilliant.org/problems/almost-vietas/#!/solution-comments/171217/

Vilakshan Gupta - 4 months ago

Log in to reply

Thanks Vilakshan. I leant from both your and Sharky's answers.

Arthur Conmy - 4 months ago

Log in to reply

Fixed btw

Arthur Conmy - 4 months ago

Log in to reply

yup

Vilakshan Gupta - 4 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...