The Fundamental Theorem of Arithmetic is the easiest of the 3, but it isn't as fundamental as you think it is. It states that every number can be prime factorized uniquely as a product of primes. No 2 numbers have the same prime factorization, and no number has 2 distinct prime factorizations.

For instance, \(10=2\times5\).

\(10\) cannot be represented as another distinct prime factorizations and no other number is prime factorized into \(2\times5\).

You are welcome to prove it in the comments below.

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

Easy Math Editor

`*italics*`

or`_italics_`

italics`**bold**`

or`__bold__`

boldNote: you must add a full line of space before and after lists for them to show up correctlyparagraph 1

paragraph 2

`[example link](https://brilliant.org)`

`> This is a quote`

Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.`2 \times 3`

`2^{34}`

`a_{i-1}`

`\frac{2}{3}`

`\sqrt{2}`

`\sum_{i=1}^3`

`\sin \theta`

`\boxed{123}`

## Comments

Sort by:

TopNewestThis factorisation is unique and apart from order.

Log in to reply