# The Moon Isn't Made of Green Cheese

$$\color{red}{\text{The following is a "proof" being circulated over the internet that claims the sum}\\ \text{of all the natural numbers is} \frac{-1}{12} \text{.} \\ \\ \text{Can you figure out what is WRONG in this "proof"?}}$$

We'll consider three infinite series:

$S_1 = 1 - 1 + 1 - 1 + 1 - 1 + \cdots$ $S_2 = 1 - 2 + 3 - 4 + 5 - 6 + \cdots$ $S_3 = 1 + 2 + 3 + 4 + 5 + 6 + \cdots$

Note that when $S_1$ contains an even number of terms, the sum is 0. When it contains an odd number of terms, the sum is 1. Since, it is either 0 or 1 with equal probability, $S_1 = \frac{1}{2}(0+1) = \frac{1}{2}$

Now, consider $S_2$. We're going to add $S_2$ to itself. When we write it, we'll do a bit of offset:

 1 2 3 4 1 - 2 + 3 - 4 + 5 - 6 + ... 1 - 2 + 3 - 4 + 5 + ... ============================== 1 - 1 + 1 - 1 + 1 - 1 + ... 

$\therefore 2S_2 = S_1 \\ \implies S_2 = \frac{1}{2} S_1 = \frac{1}{4}$

Now, let's look at what happens if we take the $S_3$, and subtract $S_2$ from it:

 1 2 3 4  1 + 2 + 3 + 4 + 5 + 6 + ... - [1 - 2 + 3 - 4 + 5 - 6 + ...] ================================ 0 + 4 + 0 + 8 + 0 + 12 + ... == 4(1 + 2 + 3 + ...) 

$\therefore S_3 - S_2 = 4 S_3 \\ \implies 3S_3 = -S_2 \\ \implies S_3 = \frac{-1}{3}S_2 \\ \implies S_3 = \frac{-1}{12} \\ \boxed{\implies 1+2+3+\cdots = \frac{-1}{12}}$ 6 years, 10 months ago

This discussion board is a place to discuss our Daily Challenges and the math and science related to those challenges. Explanations are more than just a solution — they should explain the steps and thinking strategies that you used to obtain the solution. Comments should further the discussion of math and science.

When posting on Brilliant:

• Use the emojis to react to an explanation, whether you're congratulating a job well done , or just really confused .
• Ask specific questions about the challenge or the steps in somebody's explanation. Well-posed questions can add a lot to the discussion, but posting "I don't understand!" doesn't help anyone.
• Try to contribute something new to the discussion, whether it is an extension, generalization or other idea related to the challenge.

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold
- bulleted- list
• bulleted
• list
1. numbered2. list
1. numbered
2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in $$ ... $$ or $ ... $ to ensure proper formatting.
2 \times 3 $2 \times 3$
2^{34} $2^{34}$
a_{i-1} $a_{i-1}$
\frac{2}{3} $\frac{2}{3}$
\sqrt{2} $\sqrt{2}$
\sum_{i=1}^3 $\sum_{i=1}^3$
\sin \theta $\sin \theta$
\boxed{123} $\boxed{123}$

Sort by:

Can you figure out what is WRONG in this "proof"?

I am searching for what is RIGHT in the "proof"...

- 6 years, 10 months ago

Oh god, why?

- 6 years, 10 months ago

How can one use probability for computing exact sums?

- 6 years, 10 months ago

If you have 2 hands you can use them . If you have 0 hands then you can not use them.So next time use your 1/2(0+2) or 1 hand................I am really searching for what is right in your proof.

- 6 years, 10 months ago

Do not search for right things. This proof is not mine, nor do I like it

- 6 years, 10 months ago

Yeah:

All the mathematical operations used here are improperly applied. The commutative property of addition only applies for well defined expressions, meaning, NOT those made up of an infinite amount of terms. A sequence cannot be manipulated in ways that Numberphile falsefully claims. For one, if you've seen the video, they differentiate power series and say that it applies for all $r<1$, while we know that it applies only for $|r|<1$ (and conveniently they let $r=-1$.

All the sequences above stated are not well-defined. For example:

$1-1+1-1+...$ could be looked upon as $1+(-1+1)+(-1+1)+...=1+0+0+...=1$, or, $(1-1)+(1-1)+(1-1)+...=0+0+0...=0$. Now yeah it makes sense to "average," right? But we just saw that both manipulations should be equally valid, but they're not.

Oh, and that bit of OFFSET isn't justified. But it can be, I've seen some other posts. Here's a better one:

Now to be honest I don't know much about the pipe I'm smoking here. Here's some wikia: ss

The second key insight is that the alternating series 1 − 2 + 3 − 4 + · · · is the formal power series expansion of the function 1/(1 + x)2 with 1 substituted for x. Accordingly, Ramanujan writes: s

Dividing both sides by −3, one gets c = −1/12. Generally speaking, it is dangerous to manipulate infinite series as if they were finite sums, and it is especially dangerous for divergent series. If zeroes are inserted into arbitrary positions of a divergent series, it is possible to arrive at results that are not self-consistent, let alone consistent with other methods. In particular, the step 4c = 0 + 4 + 0 + 8 + · · · is not justified by the additive identity law alone. For an extreme example, appending a single zero to the front of the series can lead to inconsistent results.

Now I don't know much about maths, but I do know String Theory. And there, this sum is defined for 24-dimensional strings. I wonder what mathematicians have to say about THAT.

I say, that it may converge to -1/12, but not equal to, just as the limit of $\frac{\sin{x}}{x}$ as $x\rightarrow 0$ is defined, but not the plug-in value.

I'm out.

- 6 years, 10 months ago

Physicists use this as a result, since the concept of infinite sum seems divergent, but is actually convergent.

- 6 years, 10 months ago

Kaboobly Doo string theory,

- 6 years, 8 months ago

The problem here is that the given series are not convergent. That means they do not give a defenite number as answer. For example consider $S_{1}$ . It is neither 0 or 1 as claimed as one cannot decide whether it contains an even number or odd number of terms. Same is the case with other two serieses . Mathematicaly such series are known as divergent serieses and the usual mathematical operations +, - etc cannot be applied to get WONDERFUL results like this. Anyway thanks to #Agnishom Chattopadhyay 16, India for mentining this problem where a majority of guys are less aware.

- 6 years, 9 months ago