Let \(a\) and \(b\) be rational numbers, and \(b\) square-free. Prove that if \(p=a+\sqrt{b}\), there exists only one value \(q\) such that \(p+q\) and \(pq\) are rational.

**Solution**

Let \(p+q=c\) and \(pq=d\). \[q=\frac{d}{p}\]

\[p+q=a+\sqrt{b}+\frac{d}{a+\sqrt{b}}=c\]

\[{a}^{2}+2a\sqrt{b}+b+d=ca+c\sqrt{b}\]

Matching each component yields:

\[2a\sqrt{b}=c\sqrt{b}\]

\[2a=c\]

\[{a}^{2}+b+d=2{a}^{2}\]

\[d={a}^{2}-b\]

Now we solve for \(q\):

\[q=\frac{{a}^{2}-b}{a+\sqrt{b}}\]

\[q=a-\sqrt{b}\]

Remark: This proposition introduces the conjugate of a number, which is reoccurs regularly in mathematics.

Check out my other notes at Proof, Disproof, and Derivation

No vote yet

1 vote

×

Problem Loading...

Note Loading...

Set Loading...

## Comments

Sort by:

TopNewestClaim is not true for \(a=1, b=1\)

Log in to reply

Is it because 0 is not rational?

Log in to reply

Wait, I don't see what is wrong. Zero is rational, so if \(a = b = 1\), the \(p = 2\) and \(q = 0\). Therefore \(p+q =2\) and \(pq =0\) which are both rational numbers.

Log in to reply

If \( p = 1 + \sqrt{1} = 2 \), then there are many values of \(q\) such that \(p+q\) and \(pq\) are both rational. For example, any integer will work.

Log in to reply

Log in to reply

@Steven Zheng i get the derivation but how do you establish that it is the only unique way?? ...... Is it like

*p and q are roots of a quadratic *and there can be only two such roots ........ please help!Log in to reply

In the end, we found that if \(p = a-\sqrt{b}\) and \(p+q , pq\) are rational, then \(q\) must equal to \(a+\sqrt{b}\).

Log in to reply