Waste less time on Facebook — follow Brilliant.
×

Let \(\phi \) denote the golden ratio, \(\phi = \dfrac{1+\sqrt5}2 \), prove that \(\displaystyle \sum_{n=1}^\infty \dfrac1{\phi^n} = \phi \).

Note by Hummus A
1 year, 9 months ago

No vote yet
1 vote

  Easy Math Editor

MarkdownAppears as
*italics* or _italics_ italics
**bold** or __bold__ bold

- bulleted
- list

  • bulleted
  • list

1. numbered
2. list

  1. numbered
  2. list
Note: you must add a full line of space before and after lists for them to show up correctly
paragraph 1

paragraph 2

paragraph 1

paragraph 2

[example link](https://brilliant.org)example link
> This is a quote
This is a quote
    # I indented these lines
    # 4 spaces, and now they show
    # up as a code block.

    print "hello world"
# I indented these lines
# 4 spaces, and now they show
# up as a code block.

print "hello world"
MathAppears as
Remember to wrap math in \( ... \) or \[ ... \] to ensure proper formatting.
2 \times 3 \( 2 \times 3 \)
2^{34} \( 2^{34} \)
a_{i-1} \( a_{i-1} \)
\frac{2}{3} \( \frac{2}{3} \)
\sqrt{2} \( \sqrt{2} \)
\sum_{i=1}^3 \( \sum_{i=1}^3 \)
\sin \theta \( \sin \theta \)
\boxed{123} \( \boxed{123} \)

Comments

Sort by:

Top Newest

Whats \(\phi\)?? -Golden ratio ??
If that's the case then above summation is just the sum of a infinite GP with first term and common ratio \(\frac{1}{\phi}\). \[\therefore \displaystyle\sum _{ n=1 }^{ \infty }{ \frac { 1 }{ \phi ^{ n } } }=\dfrac{\frac{1}{\phi}}{1-\frac{1}{\phi}}=\dfrac{1}{\phi-1}=\phi\] [Since \(\phi^2-\phi-1=0\Rightarrow \phi-1=\dfrac{1}{\phi}\)]

Rishabh Cool - 1 year, 9 months ago

Log in to reply

Going further, if we define \(x_{k}\) for integers \(k \ge 0\) as the solution to the equation \(\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{x^{n}} = x^{k}\) then \(\displaystyle\lim_{k \to \infty} x_{k} = 1\).

Brian Charlesworth - 1 year, 9 months ago

Log in to reply

yes,it's the golden ratio

Hummus A - 1 year, 9 months ago

Log in to reply

That is pretty cool, and \(\phi\) is the unique solution to the equation \(\displaystyle\sum_{n=1}^{\infty} \dfrac{1}{x^{n}} = x\) where \(x \gt 1\).

Writing the sum as \(S = \displaystyle\sum_{n=1}^{\infty} \left(\dfrac{1}{x}\right)^{n} = \sum_{n=1}^{\infty} y^{n}\) where \(y = \dfrac{1}{x}\) is such that \(0 \lt y \lt 1\), we see that we have an infinite geometric series with

\(S = \dfrac{y}{1 - y} = \dfrac{\dfrac{1}{x}}{1 - \dfrac{1}{x}} = \dfrac{1}{x - 1}\).

Then to have \(S = x\) we require that \(\dfrac{1}{x - 1} = x \Longrightarrow 1 = x^{2} - x \Longrightarrow x^{2} - x - 1 = 0\),

the positive root of which is \(\dfrac{1 + \sqrt{5}}{2} = \phi \gt 1\).

Brian Charlesworth - 1 year, 9 months ago

Log in to reply

×

Problem Loading...

Note Loading...

Set Loading...